90 research outputs found

    The Price of Updating the Control Plane in Information-Centric Networks

    Full text link
    We are studying some fundamental properties of the interface between control and data planes in Information-Centric Networks. We try to evaluate the traffic between these two planes based on allowing a minimum level of acceptable distortion in the network state representation in the control plane. We apply our framework to content distribution, and see how we can compute the overhead of maintaining the location of content in the control plane. This is of importance to evaluate content-oriented network architectures: we identify scenarios where the cost of updating the control plane for content routing overwhelms the benefit of fetching a nearby copy. We also show how to minimize the cost of this overhead when associating costs to peering traffic and to internal traffic for operator-driven CDNs.Comment: 10 pages, 12 figure

    Capacity of Cellular Networks with Femtocache

    Full text link
    The capacity of next generation of cellular networks using femtocaches is studied when multihop communications and decentralized cache placement are considered. We show that the storage capability of future network User Terminals (UT) can be effectively used to increase the capacity in random decentralized uncoded caching. We further propose a random decentralized coded caching scheme which achieves higher capacity results than the random decentralized uncoded caching. The result shows that coded caching which is suitable for systems with limited storage capabilities can improve the capacity of cellular networks by a factor of log(n) where n is the number of nodes served by the femtocache.Comment: 6 pages, 2 figures, presented at Infocom Workshops on 5G and beyond, San Francisco, CA, April 201

    On the Power Allocation Limits for Downlink Multi-user NOMA with QoS

    Full text link
    The fundamental power allocation requirements for NOMA systems with minimum quality of service (QoS) requirements are investigated. For any minimum QoS rate R0R_0, the limits on the power allocation coefficients for each user are derived, such that any power allocation coefficient outside of these limits creates an outage with probability equal to 1. The power allocation coefficients that facilitate each user's success of performing successive interference cancellation (SIC) and decoding its own signal are derived, and are found to depend only on the target rate R0R_0 and the number of total users KK. It is then proven that using these power allocation coefficients create the same outage event as if using orthogonal multiple access (OMA), which proves that the outage performance of NOMA with a fixed-power scheme can matched that of OMA for all users simultaneously. Simulations confirm the theoretical results, and also demonstrate that a power allocation strategy exists that can improve the outage performance of NOMA over OMA, even with a fixed-power strategy.Comment: Presented at Internation Conference on Communications (ICC) 2018 Wireless Communication Symposium, 5 pages long, 2 figure

    An ML-assisted OTFS vs. OFDM adaptable modem

    Full text link
    The Orthogonal-Time-Frequency-Space (OTFS) signaling is known to be resilient to doubly-dispersive channels, which impacts high mobility scenarios. On the other hand, the Orthogonal-Frequency-Division-Multiplexing (OFDM) waveforms enjoy the benefits of the reuse of legacy architectures, simplicity of receiver design, and low-complexity detection. Several studies that compare the performance of OFDM and OTFS have indicated mixed outcomes due to the plethora of system parameters at play beyond high-mobility conditions. In this work, we exemplify this observation using simulations and propose a deep neural network (DNN)-based adaptation scheme to switch between using either an OTFS or OFDM signal processing chain at the transmitter and receiver for optimal mean-squared-error (MSE) performance. The DNN classifier is trained to switch between the two schemes by observing the channel condition, received SNR, and modulation format. We compare the performance of the OTFS, OFDM, and the proposed switched-waveform scheme. The simulations indicate superior performance with the proposed scheme with a well-trained DNN, thus improving the MSE performance of the communication significantly
    • …
    corecore